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Abstract. An aspiration based simulated annealing algorithm for continuous variables has been
proposed. The new algorithm is similar to the one given by Dekkers and Aarts (1991) except that a
kind of memory is introduced into the procedure with a self-regulatory mechanism. The algorithm
has been applied to a set of standard global optimization problems and a number of more difficult,
complex, practical problems and its performance compared with that of the algorithm of Dekkers
and Aarts (1991). The new algorithm appears to offer a useful alternative to some of the currently
available stochastic algorithms for global optimization.
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1. Introduction

The global minimization problem for a function f : 
 � Rn
! R is to find x�

such that

f(x�) � f(x); 8x 2 
 : (1)

It is also assumed that the problem is essentially unconstrained, that is, the global
minimum f� of f is attained in the interior of 
.

In recent years, a number of deterministic and stochastic algorithms have been
proposed (Ratschek and Rokne, 1988; Törn and Žilinskas, 1989; Horst and Tuy,
1990 and Floudas and Pardalos, 1992) for solving (1). In this paper we restrict
ourselves to stochastic methods, especially the simulated annealing (SA) method.
More recent developments on stochastic methods are based on the combination
and adaptation of multistart (Rinnooy Kan and Timmer, 1984) and clustering
methods (Timmer, 1984 and Törn and Viitanen, 1992). They are single linkage
(SL) (Rinnooy Kan and Timmer, 1987), multilevel single linkage (MSL) (Rinnooy
Kan and Timmer, 1987a) and topographical multilevel single linkage (TMSL) (Ali
and Storey, 1994). These stochastic methods are very successful and robust for
problems with a small number of local minima, however, as the number of local
minima increases their robustness falls off (Ali, 1994). An extensive numerical
investigation of these methods using a number of very complex practical problems
is carried out in Ali (1994) with the conclusion that it is possible for the simulated
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annealing method to be made a reasonable alternative for problems with large
numbers of local minima.

In this paper we present a new SA method. The advantage of the new method
is that it can memorize the best solution during a run. In Section 2 we present our
new algorithm, in Section 3 a new cooling schedule is proposed and in Section 4
comparisons and numerical results are given. Finally, some conclusions are given
in Section 5.

2. The Aspiration Based SA Algorithm (ASA)

The SA algorithm sometimes accepts solutions which are worse than the current
solution. It is therefore possible in any single SA run for the final solution to be
worse than a solution found during the run. In fact, since the SA algorithm is a
randomization device, which by means of an acceptance/rejection criterion allows
some ascent steps during the optimization process, it is quite possible that at some
fixed temperature level the procedure will visit the optimal solution but due to
the acceptance/rejection mechanism it will leave the best solution and arrive at a
worse solution. The SA procedure, therefore, is memoryless in the sense that new
solutions are accepted disregarding previously obtained intermediate results. The
SA algorithm therefore has the following shortcomings:

Simulated annealing does not use strategic decision rules based on knowledge
of the global structure of the problem.
No learning procedure is incorporated to make effective use of information
gained in previous iterations.

We have developed an aspiration based SA algorithm which attempts to take
into account the above drawbacks by adopting a self regulatory mechanism. The
algorithm also introduces a new acceptance criterion. As far as simulated annealing
for discrete optimization is concerned many researchers have considered alternative
acceptance and/or generation probabilities (Romeo and Sangiovanni-Vincentelli,
1985; Greene and Supowit, 1986 and Faigle and Schrader, 1988). In most cases
theoretical results regarding asymptotic convergence have been established. In
reality, however, a system of cooling particles and an optimization problem are not
same and therefore the simulation has to be suitably adapted. Moreover, for the
continuous case we may have extra useful information about the objective function
such as, for example, its differentiability properties.

Let xt be the starting point of the t-th Markov chain (a Markov chain in the
simulated algorithm is a sequence of trials). We now define the aspiration value
fa(xt) of the objective function f by which the Metropolis acceptance probability
is modified. Let xa be the point obtained by carrying out a few steps of local
search from xt. We define fa(xt) as f(xa) and use it, in essence, as a guide to the
procedure. In our modification of the SA algorithm we use an acceptance criterion
which is independent of the current function value fx whenever �fxy is positive.
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This acceptance criterion is given by

Aa
xy(T ) = min

�
1; A�xy(T )

�
; (2)

where

A�xy(T ) =

�
exp

�
�(fy � fa)=T

�
if fy > fx � fa ;

1 otherwise ,
(3)

where T is the temperature. In their formulation of the SA algorithm for continuous
variables Dekkers and Aarts (1991) used the Metropolis acceptance criterion and
the generation mechanism GM:

gxy =

(
LS(x); if ! � to,

1
m(
) ; if ! < to, (4)

where to is a fixed number in (0; 1), and ! a uniform random number in (0; 1).
LS(x) denotes a local search that generates a point y in a descent direction from x.
The local search from x is not a complete local search but only a few steps of some
appropriate descent search. Thus fy < fx but y is not necessarily a local minimum.
In ASA we use the same generation mechanism but the acceptance probability
defined by (2) and (3). This has the effect of motivating the search procedure, via
the aspiration value, in a more realistic manner than the Metropolis acceptance
criterion. As for convergence, Dekkers and Aarts have proved that their algorithm
converges in probability to the global minimum of f . We have also established
probabilistic convergence for the ASA algorithm. Our convergence proof closely
follows that given by Dekkers and Aarts with the main differences arising because
of the new acceptance mechanism. For brevity the proof is omitted from this paper
but can be found in full, together with relevant discussion, in Ali (1994). In ASA
the same method was used as was used by Dekkers and Aarts to determine the
initial temperature, To. A brief description of how the ASA algorithm works is now
given.

As mentioned earlierTo is found using the initial temperature calculating scheme
for SA. (N.B. the same To as in SA will be produced if we use exactly the same
local search in GM.) A few (one or two) local descent steps are now taken from
the random starting point xo of the initial Markov chain, the resulting solution
gives the aspiration value and then the initial chain begins. During the execution
of the t-th Markov chain with length Lt, if a point is generated whose function
value is less than or equal to the aspiration value, then no more attempt is made
to generate the next point. In other words the inner loop stops, the aspiration
value is updated and a new Markov chain begins. If a solution can not be found
whose function value is less than fa(xt) then the complete chain of length Lt is
executed and the aspiration value is not updated at the begining of the next Markov
chain. The updated aspiration value gives effective information on the objective
function as the search proceeds. At the begining of each Markov chain (say, the
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t-th Markov chain) the aspiration value is updated if required and the length, Lt, is
then determined. The greater the difference between fxt , the starting solution of the
t-th Markov chain and fa(xt), the aspiration value, the longer will be the current
Markov chain. Therefore, the aspiration value fa plays a part in determining the
length of a particular chain in a way to be clarified later. In ASA, therefore, the
choice of Lt is not constant throughout the course of the algorithm, it can vary
from short to long depending upon the current aspiration solution.

Central to the construction of ASA is a mechanism for keeping track of the best
solution during the course of the procedure. This mechanism can also give signals
to the procedure to increase the temperature if required as described in the next
section.

3. An Adaptive Finite-Time Cooling Schedule

A number of cooling schedules have been reported in the literature (Otten and
van Ginneken, 1984; Lam and Delosme, 1986 and Huang et al., 1986). However,
there has always been an open question as to how fast the simulation should
be ‘cooled’, i.e. the question of the length of Markov chains and how much the
temperature may be decreased to achieve convergence to the global minimum.
Different arguments have been addressed in different cooling schedules. In our
proposed adaptive cooling schedule some of the annealing parameters proposed by
Dekkers and Aarts (1991) are changed based on what we believe to be plausible
(though as yet possibly heuristic) reasoning. Suppose, at the start of a particular
temperature level Tt the aspiration value is given by fa. Adjustments are made to
the annealing parameters in the following way.

3.1. LENGTH OF THE MARKOV CHAIN (La
t )

As mentioned above no generally acceptable solution has been presented for the
‘inner-loop criterion’, which decides how many ‘local move-iterations’ are required
at each temperature. The optimal value of this parameter, which has to depend on
the problem size, can not be determined in a rigorous way. Dekkers and Aarts
(1991) choose the value to be

Lt = 10n ; (5)

where n is the problem dimension. Rather than allowing Lt to depend on the
problem dimension only it would be more sensible to link it with the topography
of f in some way to provide additional information to the procedure. Therefore, in
our implementation, we determine the length of Markov chain in an adaptive way
that depends on the starting solution, fxt , and the aspiration value, fa, for the t-th
Markov chain. In fact, we define

La
t = Lt + Int

�
LtF

�
; (6)
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where, F = 1� exp
�
�(fxt � fa)

�
. Clearly La

t tends to Lt as fxt tends to fa and
tends to 2Lt when fxt�fa tends to1, i.e.,La

t 2 (Lt; 2Lt). This strategy allows the
possibility of increasing the number of function evaluations at a given temperature
as the difference between fa and fxt increases, but, of course, the whole of the
increased chain length will not be required if a point is found with function value
less than or equal to fa.

3.2. DECREMENT OF THE CONTROL PARAMETER

Dekkers and Aarts (1991) find the new temperature Tt+1 by

Tt+1 = Tt

�
1 +

Tt ln(1 + �)

3�(Tt)

�
�1

; (7)

where �(Tt) denotes the standard deviation of the values of the cost function at
the points in the Markov chain at Tt. The constant � is known as the distance
parameter and determines the rate of decrease of the control parameter. In ASA the
distance parameter � is allowed to vary. If the length of the current Markov chain is
small then we decrease the temperature level for the next Markov chain by a small
amount and vice versa. This is achieved by setting

� = �min + (�max � �min)
V

2Lt
; (8)

where V is the number of iterations carried out so far in the current Markov chain
and �min and �max are user supplied values. Whether the aspiration criterion is
satisfied or not the distance parameter � is calculated from the above rule so that the
greater the number of trials the greater the decrement in temperature with � = �max if
V = 2Lt. However caution has to be taken whenV is very small because then, even
if the temperature is high, the number of acceptances will be small. Moreover, if the
number of solutions generated at a high temperature is small and if they are close
to each other then �(Tt) will be very small and, from (7), the next temperature will
be reduced dramatically. Therefore, to safeguard a smooth temperature decrement
we use Tt+1 = 0:95Tt when the number of acceptances � na, where na is a small
positive integer. The main purpose of this new way of decreasing the temperature
is to introduce a controlling influence from the number of iterations in the current
Markov chain which, in turn, is influenced by the aspiration value.

3.3. STOPPING CRITERIA

The last problem to be addressed is that of finding a criterion to terminate the
annealing. A simple (but perhaps not very satisfactory) way consists in stopping
when the objective function has not changed significantly over a reasonable number
of temperature steps. This is the condition, C1, used by Dekkers and Aarts. In our
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implementation we combine C1 with a further conditionC2 which depends on the
aspiration value,

C1 :
�� d �fs(Tt)

dTt

Tt
�f(To)

��< "s ;

C2 : jf�t � faj � "r : (9)

Here �f(To) is the mean value of f at the points in the initial Markov chain, �fs(Tt)
(see Ali, 1994) is the smoothed value of �f over a number of chains in order to
reduce the fluctuations of �f(Tt), "s and "r are small positive numbers and f�t is
the final solution obtained in the t-th Markov chain, at the end of which C1 is
satisfied. Notice that the condition C1 is satisfied only if Tt is very small and no
improved solution is found over a number of chains. For termination of the ASA
procedure at the end of the t-th Markov chain we check condition C1 and then
C2. If condition C1 is satisfied but C2 is not then the algorithm starts again with
the aspiration point as the starting point of the (t+ 1)-th Markov chain and a new
aspiration value is found by updating the old one. The temperature level Tt+1 is
now increased by setting

Tt+1 = �To ; (10)

where To is the initial temperature and � satisfies 0 < � < 1. (This is known as
re-annealing (Ingber, 1989).) If we increase the temperature as above, this may,
of course, introduce cycling in the algorithm, especially when the aspiration point
gets stuck on a local minimizer. This could possibly be overcome by using

T r
o =

To

2r
; (11)

where T r
o is the initial temperature for the r-th re-annealing. However, in most

implementations of ASA a slightly better result was obtained by using

T r+1
o = �T r

o : (12)

Obviously, in the first re-annealing T 1
o = �To. When the algorithm stops the

aspiration solution is taken as the optimal solution.

4. Numerical Results

In this section we compare ASA with SA numerically. The computing was carried
out on the HP9000/870 computer at Loughborough University of Technology using
the programming language PASCAL. The test functions were taken from Dixon and
Szegö (1978), a set of commonly used functions in global optimization, together
with four more complex, practical problems.

4.1. CHOICE OF PARAMETERS

In our numerical work initial focus was on the different parameters of ASA. Except
for �, which is allowed to vary between its maximum and minimum values, the
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values of the other parameters that are common to SA and ASA are kept the
same as those suggested by Dekkers and Aarts (1991). Therefore for the cooling
schedules of both SA and ASA we use the following common parameters:�o = 0:9,
"s = 10�4 and t0 = 0:75 but � = 0:1 was chosen for SA and "r = 10�3 was chosen
for ASA. These values for the common parameters including the value for � were
suggested by Dekkers and Aarts (1991). The value of �min has to be a small number
and therefore we took �min = 0:05. We also tested the effect ofna by varying it from
2 to 5 and the results indicated that na = 3 was a reasonable value and so for our
comparison purposes this was the value we used. We found the initial temperature
To for both ASA and SA by generating mo = 10n solutions. For the generation
mechanism, GM, we used steepest descent in the early stages and limited memory
BFGS (version E04DGF from NAG), implemented for two iterations, in the later
stages for the SA and ASA algorithms. If the current temperature level, Tt, falls
below a certain fraction of the initial temperature,To, i.e. ifTt � 0:05To orTt � 15,
BFGS is implemented. The effects of conditions C1 and C2 and the effects of �
have been thoroughly investigated in Ali (1994) and the results suggest that a good
value for � lies in the range [0:05; 0:30]. The incorporation of condition C2 also
enhanced the robustness of the algorithm in finding the global minimum, this effect
was particularly noticed in the practical problems (Ali, 1994). The investigation of
the effects of �max suggested that a good value for �max lies in [0:1; 1:0] with the
overall best value equal to 0:8. For a full discussion of these effects including the
complete set of results see Ali (1994).

5. Comparisons

In Table I, the results of comparing SA, ASA and ASAmet are shown, where
ASAmet is the ASA algorithm with the Metropolis acceptance criterion. In this
Table AVE represents the average result for all test functions for which the global
minima were obtained, R the number of re-annealings, t the temperature counter,
FE the number of function evaluations, cpu the cpu time andTo and Tf respectively
the initial and final temperatures.
From Table I it is clear that both implementations of the ASA algorithm perform
much better than SA in terms of cpu and FE and, moreover, SA failed to locate the
global minimum for GP. The difference between ASA and ASAmet is very small
but the results do indicate that the changes made to the Metropolis acceptance
criterion have made some improvement. Although in the event of re-annealing in
ASA the temperature is increased to facilitate the global exploration of the area of
interest 
 still the average number of temperature decrements for ASA is much
less than that for SA. This improvement occurs because the aspiration value not
only provides information as to whether to increase the temperature in order to
search for a better solution but also helps in decisions to take meaningful up-hill
steps.
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Table I.

SA

FE cpu t To Tf R

1088 0.05 42 335.34 5.24E-5 (-) BR
1102� 0.09 49 21815.39 5.24E-5 (-) GP
1120 0.10 26 10.87 3.49E-5 (-) S5
1122 0.12 26 11.16 3.49E-5 (-) S7
1179 0.12 27 11.25 3.49E-5 (-) S10
1252 0.18 38 5.42 5.24E-5 (-) H3
1817 0.33 27 4.77 2.62E-5 (-) H6

1263 0.15 31 AVE

ASA

383 0.06 16 335.34 2.39E-5 0 BR
1602 0.10 35 21815.39 5.73E-2 3 GP
592 0.12 15 10.87 7.50E-1 0 S5
596 0.09 15 11.16 7.50E-1 0 S7
598 0.11 16 11.25 7.50E-1 0 S10
607 0.09 19 5.42 1.48E-2 0 H3
602 0.17 11 4.77 8.12E-3 0 H6

711 0.11 18 AVE

ASAmet

500 0.04 17 335.34 6.0E-1 0 BR
1417 0.13 33 21815.39 9.73E-5 2 GP
635 0.10 16 10.87 2.32E-1 0 S5
639 0.12 16 11.16 2.33E-1 0 S7
639 0.13 16 11.25 2.34E-1 0 S10
633 0.12 21 5.42 2.12E-2 0 H3
808 0.24 16 4.77 1.70E-2 0 H6

753 0.13 19 AVE

� Local minimum found; ASAmet is ASA with Metropolis accep-
tance criterion

Notice that the stopping condition C1 must be satisfied for both SA and ASA
andC2 is only used in ASA whenC1 is already satisfied. This means that the larger
values for Tf in ASA are the results of the changes made to SA other than the
stopping condition. The low values forTf in SA occur because at low temperatures
the generation mechanism GM can cause the standard deviation �(Tt) in (7) to
become very small.

ASA was also compared with several other currently available stochastic algo-
rithms using cpu times, number of function evaluations and accuracy of the global
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Table II.

SA ASA

Problem n FE CPU f� FE CPU f�

TR 13 157931 2382.10 0.141 101357 1380.90 0.144
BC 10 171543 414400 9.641 166317 391517 9.640
PL 12 268568 1396.50 59.80 89265 572.30 59.84

MPy

Si(B) 12 206166 315.71 -23.12 151109 175.52 -25.98
Si(C) 12 272927 254.92 -10.57 66274 47.63 -13.03
As 12 205151 319.80 -18.49 10462 149.67 -18.49

y Calculated for six particles (Ali, 1994)

minima as indicators. The results, which were found to be quite encouraging, are
reported in full in Ali (1994).

6. Practical Problems

In addition to the above test functions we also considered four highly complex
problems from practical fields of application. They are concerned with a stirred-
tank reactor (TR), a bifunctional catalyst reactor (BC), the statistics of pig-liver
behaviour (PL) and many-body potentials (MP) for silicon (Si(B)) and (Si(C)) and
arsenic (As). The first two are optimal control problems from chemical engineering
with two and twenty five local optima and global optimum values of 0:133 and
10:09 respectively. The number of local maxima for the third problem is not known
but the global maximum is known to be 59:84. The last problem is the most difficult
of all and has a large number of local minima and an unknown global minimum.
This problem arises in the field of physical chemistry (Ali and Smith, 1993). Full
details of these problems can be found in (Ali, 1994). In Table II we briefly present
the best results obtained by SA and ASA for these problems. The full set of results
can be found in Ali (1994). A discretization technique was introduced to deal with
the differential equations in the optimal control problems (Ali, 1994).

From the above Table it is quite clear that both in terms of the number of function
evaluations and cpu time ASA is much superior to SA. Moreover, ASA exhibited
superiority over SA in finding good approximations to the global minima for all of
the practical problems except BC. Further results also confirmed the competiveness
of ASA with other recent stochastic algorithms, see Ali, 1994.

7. Conclusions

From our numerical comparisons in this paper it is clear that ASA is considerably
superior to SA. It also offers a useful alternative to some other currently available
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stochastic methods (Ali, 1994). For higher dimensional problems and for problems
with many local minima SA-type algorithms may be necessary because the amount
of data that has to be stored is negligible and no complete local searches are needed.
Moreover, if the dimension or the number of local minima is increased, this has
no effect on the amount of data stored. Therefore, in many situations the ASA
algorithm will be preferable since it performs better than the original SA algorithm.
However, further research may yield yet more efficient SA algorithms.
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